skip to main content


Search for: All records

Creators/Authors contains: "Arndt, Martina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Previous research has established that peer relationships are important for student success, yet they can be hard to form at regional universities with large commuter populations. In these settings, connections in the classroom become critical. In an effort to gauge the degree to which students have the opportunity to form peer relationships in the classroom, this project utilized social network analysis to investigate to what degree students take repeated courses with the same peers. We report here on the number and nature of connections for a cohort of students who began STEM majors in Fall 2015. Two key findings include that White students have more peer connections than students of color, and the degree of connectivity correlates with graduation rates. Implications for these findings regarding curriculum design will be discussed. 
    more » « less
  2. Four writing-intensive, inquiry-based, three-credit seminars were created to serve as the hub for linked learning communities for first-year students in STEM. Based on United Nations Sustainable Development Goals (UN SDGs), the seminars engaged students in socially-relevant modeling, lab work, and public presentations. The seminars were designed to foster a communal view of science and mathematics, both in terms of the importance of collaboration to STEM success and the application of STEM to real-world problems. Course structures and sample materials will be shared, along with preliminary analyses from a randomized controlled trial comparing students in the seminars to a control group of peers. In fall 2021,students who participated in the seminars reported increased awareness of the UN SDGs, valued team work more highly, and earned more credits and higher grades than control group students. Supported by NSF2020765, these seminars are part of a study of the effectiveness of learning communities. 
    more » « less
  3. Abstract

    This letter capitalizes on a unique set of total solar eclipse observations acquired between 2006 and 2020 in white light, Fexi789.2 nm (Tfexi= 1.2 ± 0.1 MK), and Fexiv530.3 nm (Tfexiv= 1.8 ± 0.1 MK) emission complemented by in situ Fe charge state and proton speed measurements from Advanced Composition Explorer/SWEPAM-SWICS to identify the source regions of different solar wind streams. The eclipse observations reveal the ubiquity of open structures invariably associated with Fexiemission from Fe10+and hence a constant electron temperature,Tc=Tfexi, in the expanding corona. The in situ Fe charge states are found to cluster around Fe10+, independently of the 300–700 km s−1stream speeds, referred to as the continual solar wind. Thus, Fe10+yields the fiducial link between the continual solar wind and itsTfexisources at the Sun. While the spatial distribution of Fexivemission from Fe13+associated with streamers changes throughout the solar cycle, the sporadic appearance of charge states >Fe11+in situ exhibits no cycle dependence regardless of speed. These latter streams are conjectured to be released from hot coronal plasmas at temperatures ≥Tfexivwithin the bulge of streamers and from active regions, driven by the dynamic behavior of prominences magnetically linked to them. The discovery of continual streams of slow, intermediate, and fast solar wind characterized by the sameTfexiin the expanding corona places new constraints on the physical processes shaping the solar wind.

     
    more » « less